
Package: tidypopgen (via r-universe)
September 13, 2024

Title Tidy Population Genetics

Version 0.0.0.9016

Description We provide a tidy grammar of population genetics,
facilitating the manipulation and analysis of data on biallelic
single nucleotide polymorphisms (SNPs).

License GPL (>= 3)

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Depends R (>= 3.0.2), dplyr, tibble

Imports bigparallelr, bigsnpr, bigstatsr, forcats, foreach, generics,
ggplot2, magrittr, methods, MASS, patchwork, rlang, stats,
stringr, tidyselect, tidyr, utils, Rcpp, UpSetR, vctrs

Suggests adegenet, admixtools, broom, hierfstat, knitr, detectRUNS,
LEA, rmarkdown, readr, testthat (>= 3.0.0), vcfR

Remotes uqrmaie1/admixtools

VignetteBuilder knitr

Config/testthat/edition 3

LinkingTo Rcpp, RcppArmadillo (>= 0.9.600), bigstatsr, rmio

LazyData true

Repository https://evolecolgroup.r-universe.dev

RemoteUrl https://github.com/EvolEcolGroup/tidypopgen

RemoteRef main

RemoteSha 7c5ef31f704c7a6f59fcdeccf39dda6fd376c718

Contents
as_q_matrix . 3
augment.gt_dapc . 4
augment_gt_pca . 4

1

2 Contents

augment_loci . 5
augment_loci_gt_pca . 6
autoplot.gt_cluster_pca . 6
autoplot.gt_dapc . 7
autoplot.qc_report_indiv . 8
autoplot.qc_report_loci . 9
autoplot.q_matrix . 10
autoplot_gt_pca . 11
autoplot_gt_pcadapt . 12
count_loci . 12
distruct_colours . 13
filter_high_relatedness . 13
gen_tibble . 14
gt_as_genind . 16
gt_as_genlight . 17
gt_as_geno_lea . 17
gt_as_hierfstat . 18
gt_as_plink . 18
gt_as_vcf . 19
gt_cluster_pca . 19
gt_cluster_pca_best_k . 20
gt_dapc . 22
gt_extract_f2 . 23
gt_get_file_names . 25
gt_has_imputed . 26
gt_impute_simple . 26
gt_king . 27
gt_load . 28
gt_pca . 28
gt_pcadapt . 29
gt_pca_autoSVD . 29
gt_pca_partialSVD . 31
gt_pca_randomSVD . 32
gt_roh_window . 33
gt_save . 35
gt_set_imputed . 36
gt_uses_imputed . 36
indiv_het_obs . 37
indiv_missingness . 37
indiv_ploidy . 38
loci_alt_freq . 39
loci_chromosomes . 40
loci_hwe . 40
loci_ld_clump . 41
loci_missingness . 43
loci_names . 43
loci_transitions . 44
loci_transversions . 45

as_q_matrix 3

pairwise_allele_sharing . 45
pairwise_ibs . 46
pairwise_pop_fst . 47
pop_fis . 48
pop_fst . 49
predict.gt_pca . 49
qc_report_indiv . 50
qc_report_loci . 51
rbind.gen_tbl . 51
rbind_dry_run . 52
read_q_matrix_list . 53
scale_fill_distruct . 54
select_loci . 54
select_loci_if . 55
show_genotypes . 55
show_loci . 56
show_ploidy . 57
snp_allele_sharing . 57
snp_ibs . 58
snp_king . 59
summary.rbind_report . 60
theme_distruct . 60
tidy.gt_dapc . 61
tidy.gt_pca . 62
tidy.q_matrix . 63

Index 65

as_q_matrix Convert a Q matrix into a q_matrix obejct

Description

Takes a matrix of Q values, check its validity, and then formats it correctly to make sure it can then
be processed and plotted correctly

Usage

as_q_matrix(x)

Arguments

x a matrix

Value

a q_matrix object, which is a matrix with appropriate column names (.QX, where X is the compo-
nent number) to use with plotting

4 augment_gt_pca

augment.gt_dapc Augment data with information from a gt_dapc object

Description

Augment for gt_dapc accepts a model object and a dataset and adds scores to each observation
in the dataset. Scores for each component are stored in a separate column, which is given name
with the pattern ".fittedLD1", ".fittedLD2", etc. For consistency with broom::augment.prcomp, a
column ".rownames" is also returned; it is a copy of ’id’, but it ensures that any scripts written for
data augmented with broom::augment.prcomp will work out of the box (this is especially helpful
when adapting plotting scripts).

Usage

S3 method for class 'gt_dapc'
augment(x, data = NULL, k = NULL, ...)

Arguments

x A gt_dapc object returned by gt_dapc().

data the gen_tibble used to run the PCA.

k the number of components to add

... Not used. Needed to match generic signature only.

Value

A gen_tibble containing the original data along with additional columns containing each observa-
tion’s projection into PCA space.

See Also

gt_dapc() gt_dapc_tidiers

augment_gt_pca Augment data with information from a gt_pca object

Description

Augment for gt_pca accepts a model object and a dataset and adds scores to each observation in
the dataset. Scores for each component are stored in a separate column, which is given name with
the pattern ".fittedPC1", ".fittedPC2", etc. For consistency with broom::augment.prcomp, a column
".rownames" is also returned; it is a copy of ’id’, but it ensures that any scripts written for data
augmented with broom::augment.prcomp will work out of the box (this is especially helpful when
adapting plotting scripts).

augment_loci 5

Usage

S3 method for class 'gt_pca'
augment(x, data = NULL, k = NULL, ...)

Arguments

x A gt_pca object returned by one of the gt_pca_* functions.

data the gen_tibble used to run the PCA.

k the number of components to add

... Not used. Needed to match generic signature only.

Value

A gen_tibble containing the original data along with additional columns containing each observa-
tion’s projection into PCA space.

See Also

gt_pca_autoSVD() gt_pca_tidiers

augment_loci Augment the loci table with information from a analysis object

Description

augment_loci add columns to the loci table of a gen_tibble related to information from a given
analysis.

Usage

augment_loci(x, data, ...)

Arguments

x An object returned by one of the gt_ functions (e.g. gt_pca()).

data the gen_tibble used to run the PCA.

... Additional parameters passed to the individual methods.

Value

A gen_tibble with additional columns added to the loci tibble (accessible with show_loci(). If
data is missing, a tibble of the information, with a column .rownames giving the loci names.

6 autoplot.gt_cluster_pca

augment_loci_gt_pca Augment the loci table with information from a gt_pca object

Description

Augment for gt_pca accepts a model object and a gen_tibble and adds loadings for each locus
to the loci table. Loadings for each component are stored in a separate column, which is given
name with the pattern ".loadingPC1", ".loadingPC2", etc. If data is missing, then a tibble with the
loadings is returned.

Usage

S3 method for class 'gt_pca'
augment_loci(x, data = NULL, k = NULL, ...)

Arguments

x A gt_pca object returned by one of the gt_pca_* functions.

data the gen_tibble used to run the PCA.

k the number of components to add

... Not used. Needed to match generic signature only.

Value

A gen_tibble with a loadings added to the loci tibble (accessible with show_loci(). If data is
missing, a tibble of loadings.

See Also

gt_pca_autoSVD() gt_pca_tidiers

autoplot.gt_cluster_pca

Autoplots for gt_cluster_pca objects

Description

For gt_cluster_pca, autoplot produces a plot of a metric of choice (’BIC’, ’AIC’ or ’WSS’)
against the number of clusters (k). This plot is can be used to infer the best value of k, which
corresponds to the smallest value of the metric (the minimum in an ’elbow’ shaped curve). In some
cases, there is not ’elbow’ and the metric keeps decreasing with increasing k; in such cases, it is
customary to choose the value of k at which the decrease in the metric reaches as plateau. For a
programmatic way of choosing k, use gt_cluster_pca_best_k().

autoplot.gt_dapc 7

Usage

S3 method for class 'gt_cluster_pca'
autoplot(object, metric = c("BIC", "AIC", "WSS"), ...)

Arguments

object an object of class gt_dapc

metric the metric to plot on the y axies, one of ’BIC’, ’AIC’, or ’WSS’ (with sum of
squares)

... not currently used.

Details

autoplot produces simple plots to quickly inspect an object. They are not customisable; we rec-
ommend that you use ggplot2 to produce publication ready plots.

Value

a ggplot2 object

autoplot.gt_dapc Autoplots for gt_dapc objects

Description

For gt_dapc, the following types of plots are available:

• screeplot: a plot of the eigenvalues of the discriminant axes

• scores a scatterplot of the scores of each individual on two discriminant axes (defined by ld)

• loadings a plot of loadings of all loci for a discriminant axis (chosen with ld)

• components a bar plot showing the probability of assignment to each cluster

Usage

S3 method for class 'gt_dapc'
autoplot(
object,
type = c("screeplot", "scores", "loadings", "components"),
ld = NULL,
group = NULL,
n_col = 1,
...

)

8 autoplot.qc_report_indiv

Arguments

object an object of class gt_dapc

type the type of plot (one of "screeplot", "scores" and "loadings")

ld the principal components to be plotted: for scores, a pair of values e.g. c(1,2);
for loadings either one or more values.

group a vector of group memberships to order the individuals in "components" plot. If
NULL, the clusters used for the DAPC will be used.

n_col for loadings plots, if multiple LD axis are plotted, how many columns should
be used.

... not currently used.

Details

autoplot produces simple plots to quickly inspect an object. They are not customisable; we rec-
ommend that you use ggplot2 to produce publication ready plots.

Value

a ggplot2 object

autoplot.qc_report_indiv

Autoplots for qc_report_indiv objects

Description

For qc_report_indiv, the following types of plots are available:

• scatter: a plot of missingness and observed heterozygosity within individuals.

• relatedness: a histogram of paired kinship coefficients

Usage

S3 method for class 'qc_report_indiv'
autoplot(
object,
type = c("scatter", "relatedness"),
miss_threshold = NULL,
kings_threshold = kings_threshold,
...

)

autoplot.qc_report_loci 9

Arguments

object an object of class qc_report_indiv

type the type of plot (scatter,relatedness)

miss_threshold a threshold for the accepted rate of missingness within individuals

kings_threshold

an optional numeric, a threshold of relatedness for the sample

... not currently used.

Details

autoplot produces simple plots to quickly inspect an object. They are not customisable; we rec-
ommend that you use ggplot2 to produce publication ready plots.

Value

a ggplot2 object

autoplot.qc_report_loci

Autoplots for qc_report_loci objects

Description

For qc_report_loci, the following types of plots are available:

• overview: an UpSet plot, giving counts of snps over the threshold for missingness, minor
allele frequency, and Hardy-Weinberg equilibrium P-value, and visualising the interaction
between these

• all: a four panel plot, containing missing high maf, missing low maf, hwe, and significant hwe
plots

• missing: a histogram of proportion of missing data
• missing low maf: a histogram of the proportion of missing data for snps with low minor

allele freqency
• missing high maf:a histogram of the proportion of missing data for snps with high minor

allele freqency

• maf: a histogram of minor allele frequency

• hwe: a histogram of HWE exact test p-values
• significant hwe: a histogram of significant HWE exact test p-values

10 autoplot.q_matrix

Usage

S3 method for class 'qc_report_loci'
autoplot(
object,
type = c("overview", "all", "missing", "missing low maf", "missing high maf", "maf",

"hwe", "significant hwe"),
maf_threshold = NULL,
miss_threshold = NULL,
hwe_p = NULL,
...

)

Arguments

object an object of class qc_report_loci

type the type of plot (one of overview, all, missing, missing low maf, missing high maf,
maf, hwe, and significant hwe)

maf_threshold a threshold for the accepted rate of minor allele frequency of loci

miss_threshold a threshold for the accepted rate of missingness per loci

hwe_p a threshold of significance for Hardy-Weinberg exact p-values

... not currently used.

Details

autoplot produces simple plots to quickly inspect an object. They are not customisable; we rec-
ommend that you use ggplot2 to produce publication ready plots.

Value

a ggplot2 object

autoplot.q_matrix Autoplots for q_matrix objects

Description

Autoplots for q_matrix objects

Usage

S3 method for class 'q_matrix'
autoplot(object, data = NULL, annotate_group = TRUE, ...)

autoplot_gt_pca 11

Arguments

object A Q matrix object (as returned by as_q_matrix()).

data An associated tibble (e.g. a gen_tibble), with the individuals in the same order
as the data used to generate the Q matrix

annotate_group Boolean determining whether to annotate the plot with the group information

... not currently used.

Value

a barplot of individuals, coloured by ancestry proportion

autoplot_gt_pca Autoplots for gt_pca objects

Description

For gt_pca, the following types of plots are available:

• screeplot: a plot of the eigenvalues of the principal components (currently it plots the sin-
gular value)

• scores a scatterplot of the scores of each individual on two principal components (defined by
pc)

• loadings a plot of loadings of all loci for a given component (chosen with pc)

Usage

S3 method for class 'gt_pca'
autoplot(object, type = c("screeplot", "scores", "loadings"), k = NULL, ...)

Arguments

object an object of class gt_pca

type the type of plot (one of "screeplot", "scores" and "loadings")

k the principal components to be plotted: for scores, a pair of values e.g. c(1,2);
for loadings either one or more values.

... not currently used.

Details

autoplot produces simple plots to quickly inspect an object. They are not customisable; we rec-
ommend that you use ggplot2 to produce publication ready plots.

Value

a ggplot2 object

12 count_loci

autoplot_gt_pcadapt Autoplots for gt_pcadapt objects

Description

For gt_pcadapt, the following types of plots are available:

• qq: a qunatile-quantile plot of the p-values from pcadapt (wrapping bigsnpr::snp_qq())

• manhattan a manhattan plot of the p-values from pcadapt (wrapping bigsnpr::snp_manhattan())

Usage

S3 method for class 'gt_pcadapt'
autoplot(object, type = c("qq", "manhattan"), ...)

Arguments

object an object of class gt_pcadapt

type the type of plot (one of "qq", and "mnahattan")

... further arguments to be passed to bigsnpr::snp_qq() or bigsnpr::snp_manhattan().

Details

autoplot produces simple plots to quickly inspect an object. They are not customisable; we rec-
ommend that you use ggplot2 to produce publication ready plots.

Value

a ggplot2 object

count_loci Count the number of loci in a gen_tibble

Description

Count the number of loci in gen_tibble (or directly from its genotype column).

Usage

count_loci(.x, ...)

S3 method for class 'tbl_df'
count_loci(.x, ...)

S3 method for class 'vctrs_bigSNP'
count_loci(.x, ...)

distruct_colours 13

Arguments

.x a gen_tibble, or a vector of class vctrs_bigSNP (usually the genotype column
of a gen_tibble object).

... currently unused.

Value

the number of loci

distruct_colours Distruct colours

Description

Colours in the palette used by distruct

Usage

distruct_colours

Format

A vector of 60 hex colours

filter_high_relatedness

Filter individuals based on a relationship threshold

Description

This function takes a matrix of x by y individuals containing relatedness coefficients and returns the
maximum set of individuals that contains no relationships above the given threshold.

Usage

filter_high_relatedness(
matrix,
.x = NULL,
kings_threshold = NULL,
verbose = FALSE

)

14 gen_tibble

Arguments

matrix a square symmetric matrix of individuals containing relationship coefficients

.x a gen_tibble object
kings_threshold

a threshold over which

verbose boolean whether to report to screen

Value

a list where ’1’ is individual ID’s to retain, ’2’ is individual ID’s to remove, and ’3’ is a boolean
where individuals to keep are TRUE and individuals to remove are FALSE

gen_tibble Constructor for a gen_tibble

Description

A gen_tibble stores genotypes for individuals in a tidy format. DESCRIBE here the format

Usage

gen_tibble(
x,
...,
valid_alleles = c("A", "T", "C", "G"),
missing_alleles = c("0", "."),
backingfile = NULL,
quiet = FALSE

)

S3 method for class 'character'
gen_tibble(
x,
...,
parser = c("vcfR", "cpp"),
chunk_size = NULL,
valid_alleles = c("A", "T", "C", "G"),
missing_alleles = c("0", "."),
backingfile = NULL,
quiet = FALSE

)

S3 method for class 'matrix'
gen_tibble(
x,
indiv_meta,

gen_tibble 15

loci,
...,
ploidy = 2,
valid_alleles = c("A", "T", "C", "G"),
missing_alleles = c("0", "."),
backingfile = NULL,
quiet = FALSE

)

Arguments

x can be:

• a string giving the path to a PLINK BED or PED file. The associated BIM
and FAM files for the BED, or MAP for PED are expected to be in the same
directory and have the same file name.

• a string giving the path to a RDS file storing a bigSNP object from the
bigsnpr package (usually created with bigsnpr::snp_readBed())

• a string giving the path to a vcf file. Note that we currently read the whole
vcf in memory with vcfR, so only smallish vcf can be imported. Only
biallelic SNPs will be considered.

• a string giving the path to a packedancestry .geno file. The associated .ind
and .snp files are expected to be in the same directory and share the same
file name prefix.

• a genotype matrix of dosages (0, 1, 2, NA) giving the dosage of the alternate
allele.

... if x is the name of a vcf file, additional arguments passed to vcfR::read.vcfR().
Otherwise, unused.

valid_alleles a vector of valid allele values; it defaults to ’A’,’T’, ’C’ and ’G’.
missing_alleles

a vector of values in the BIM file/loci dataframe that indicate a missing value for
the allele value (e.g. when we have a monomorphic locus with only one allele).
It defaults to ’0’ and ’.’ (the same as PLINK 1.9).

backingfile the path, including the file name without extension, for backing files used to
store the data (they will be given a .bk and .RDS automatically). This is not
needed if x is already an .RDS file. If x is a .BED file and backingfile is left
NULL, the backing file will be saved in the same directory as the bed file, using
the same file name but with a different file type (.bk rather than .bed). The same
logic applies to .vcf files. If x is a genotype matrix and backingfile is NULL,
then a temporary file will be created (but note that R will delete it at the end of
the session!)

quiet provide information on the files used to store the data

parser the name of the parser used for VCF, either "cpp" to use a fast C++ parser, or
"vcfR" to use the R package vcfR. The latter is slower but more robust; if "cpp"
gives error, try using "vcfR" in case your VCF has an unusual structure.

chunk_size the number of loci or individuals (depending on the format) processed at a time
(currently used if x is a vcf or packedancestry file)

16 gt_as_genind

indiv_meta a list, data.frame or tibble with compulsory columns ’id’ and ’population’, plus
any additional metadata of interest. This is only used if x is a genotype matrix.
Otherwise this information is extracted directly from the files.

loci a data.frame or tibble, with compulsory columns ’name’, ’chromosome’, and
’position’,’genetic_dist’, ’allele_ref’ and ’allele_alt’. This is only used if x is a
genotype matrix. Otherwise this information is extracted directly from the files.

ploidy the ploidy of the samples (either a single value, or a vector of values for mixed
ploidy). Only used if creating a gen_tibble from a matrix of data; otherwise,
ploidy is determined automatically from the data as they are read.

Details

When loading packedancestry files, missing alleles will be converted from ’X’ to NA

Value

an object of the class gen_tbl.

gt_as_genind Convert a gen_tibble to a genind object from adegenet

Description

This function converts a gen_tibble to a genind object from adegenet

Usage

gt_as_genind(x)

Arguments

x a gen_tibble, with population coded as ’population’

Value

a genind object

gt_as_genlight 17

gt_as_genlight Convert a gen_tibble to a genlight object from adegenet

Description

This function converts a gen_tibble to a genlight object from adegenet

Usage

gt_as_genlight(x)

Arguments

x a gen_tibble, with population coded as ’population’

Value

a genlight object

gt_as_geno_lea Convert a gentibble to a .geno file for sNMF from the LEA package

Description

This function writes a .geno file fom a gen_tibble. Unless a file path is given, a file with suffix
.geno is written in the same location as the .rds and .bk files that underpin the gen_tibble.

Usage

gt_as_geno_lea(x, file = NULL)

Arguments

x a gen_tibble

file the .geno filename with a path, or NULL (the default) to use the location of the
backing files.

Value

the path of the .geno file

18 gt_as_plink

gt_as_hierfstat Convert a gen_tibble to a data.frame compatible with hierfstat

Description

This function converts a gen_tibble to a data.frame formatted to be used by hierfstat functions.

Usage

gt_as_hierfstat(x)

Arguments

x a gen_tibble, with population coded as ’population’

Value

a data.frame with a column ’pop’ and further column representing the genotypes (with alleles re-
coded as 1 and 2)

gt_as_plink Export a gen_tibble object to PLINK bed format

Description

This function exports all the information of a gen_tibble object into a PLINK bed, ped or raw file
(and associated files, i.e. .bim and .fam for .bed; .fam for .ped).

Usage

gt_as_plink(x, file = NULL, type = c("bed", "ped", "raw"), overwrite = TRUE)

Arguments

x a gen_tibble object

file a character string giving the path to output file. If left to NULL, the output file
will have the same path and prefix of the backingfile.

type one of "bed", "ped" or "raw"

overwrite boolean whether to overwrite the file.

Value

the path of the saved file

gt_as_vcf 19

gt_as_vcf Convert a gen_tibble to a VCF

Description

This function write a VCF from a gen_tibble.

Usage

gt_as_vcf(x, file = NULL, chunk_size = NULL, overwrite = FALSE)

Arguments

x a gen_tibble, with population coded as ’population’

file the .vcf file name with a path, or NULL (the default) to use the location of the
backing files.

chunk_size the number of loci processed at a time. Automatically set if left to NULL

overwrite logical, should the file be overwritten if it already exists?

Value

the path of the .vcf file

gt_cluster_pca Run K-clustering on principal components

Description

This function implements the clustering procedure used in Discriminant Analysis of Principal Com-
ponents (DAPC, Jombart et al. 2010). This procedure consists in running successive K-means with
an increasing number of clusters (k), after transforming data using a principal component analysis
(PCA). For each model, several statistical measures of goodness of fit are computed, which allows to
choose the optimal k using the function gt_cluster_pca_best_k(). See details for a description
of how to select the optimal k and vignette("adegenet-dapc") for a tutorial.

Usage

gt_cluster_pca(
x = NULL,
n_pca = NULL,
k_clusters = c(1, round(nrow(x$u)/10)),
method = c("kmeans", "ward"),
n_iter = 1e+05,
n_start = 10,
quiet = FALSE

)

20 gt_cluster_pca_best_k

Arguments

x a gt_pca object returned by one of the gt_pca_* functions.
n_pca number of principal components to be fed to the LDA.
k_clusters number of clusters to explore, either a single value, or a vector of length 2 giving

the minimum and maximum (e.g. 1:5). If left NULL, it will use 1 to the number
of pca components divided by 10 (a reasonable guess).

method either ’kmeans’ or ’ward’
n_iter number of iterations for kmeans (only used if method="kmeans")
n_start number of starting points for kmeans (only used if method="kmeans")
quiet boolean on whether to silence outputting information to the screen (defaults to

FALSE)

Value

a gt_cluster_pca object, which is a subclass of gt_pca with an additional element ’cluster’, a list
with elements:

• ’method’ the clustering method (either kmeans or ward)
• ’n_pca’ number of principal components used for clustering
• ’k’ the k values explored by the function
• ’WSS’ within sum of squares for each k
• ’AIC’ the AIC for each k
• ’BIC’ the BIC for each k
• ’groups’ a list, with each element giving the group assignments for a given k

gt_cluster_pca_best_k Find the best number of clusters based on principal components

Description

This function selects the best k value based on a chosen metric and criterion. It is equivalent
to plotting the metric against the k values, and selecting the k that fulfils a given criterion (see
details for an explanation of each criterion). This function simply adds an element ’best_k’ to
the gt_cluster_pca returned by gt_cluster_pca(). The choice can be over-ridden simply by
assigning a different value to that element (e.g. for an object x and a desired k of 8, simply use
x$best_k <- 8)

Usage

gt_cluster_pca_best_k(
x,
stat = c("BIC", "AIC", "WSS"),
criterion = c("diffNgroup", "min", "goesup", "smoothNgoesup", "goodfit"),
quiet = FALSE

)

gt_cluster_pca_best_k 21

Arguments

x a gt_cluster_pca object obtained with gt_cluster_pca()

stat a statistics, one of "BIC", "AIC" or "WSS"

criterion one of "diffNgroup", "min", "goesup", "smoothNgoesup", "goodfit", see details
for a discussion of each approach.

quiet boolean on whether to silence outputting information to the screen (defaults to
FALSE)

Details

The analysis of data simulated under various population genetics models (see reference) suggested
an ad-hoc rule for the selection of the optimal number of clusters. First important result is that BIC
seems more efficient than AIC and WSS to select the appropriate number of clusters (see example).
The rule of thumb consists in increasing K until it no longer leads to an appreciable improvement
of fit (i.e., to a decrease of BIC). In the most simple models (island models), BIC decreases until
it reaches the optimal K, and then increases. In these cases, the best rule amounts to choosing the
lowest K. In other models such as stepping stones, the decrease of BIC often continues after the
optimal K, but is much less steep, so a change in slope can be taken as an indication of where the
best k lies.

This function provides a programmatic way to select k. Note that it is highly recommended to look
at the graph of BIC versus the numbers of clusters, to understand and validate the programmatic
selection. The criteria available in this function are:

• "diffNgroup": differences between successive values of the summary statistics (by default,
BIC) are split into two groups using a Ward’s clustering method (see ?hclust), to differentiate
sharp decrease from mild decreases or increases. The retained K is the one before the first
group switch. This criterion appears to work well for island/hierarchical models, and decently
for isolation by distance models, albeit with some unstability. It can be confounded by an
initial, very sharp decrease of the test statistics. IF UNSURE ABOUT THE CRITERION TO
USE, USE THIS ONE.

• "min": the model with the minimum summary statistics (as specified by stat argument, BIC by
default) is retained. Is likely to work for simple island model, using BIC. It is likely to fail in
models relating to stepping stones, where the BIC always decreases (albeit by a small amount)
as K increases. In general, this approach tends to over-estimate the number of clusters.

• "goesup": the selected model is the K after which increasing the number of clusters leads to
increasing the summary statistics. Suffers from inaccuracy, since i) a steep decrease might
follow a small ’bump’ of increase of the statistics, and ii) increase might never happen, or
happen after negligible decreases. Is likely to work only for clear-cut island models.

• "smoothNgoesup": a variant of "goesup", in which the summary statistics is first smoothed
using a lowess approach. Is meant to be more accurate than "goesup" as it is less prone to
stopping to small ’bumps’ in the decrease of the statistics.

• "goodfit": another criterion seeking a good fit with a minimum number of clusters. This
approach does not rely on differences between successive statistics, but on absolute fit. It
selects the model with the smallest K so that the overall fit is above a given threshold.

22 gt_dapc

Value

a ’gt_cluster_pca’ object with an added element ’best_k’

References

Jombart T, Devillard S and Balloux F (2010) Discriminant analysis of principal components: a new
method for the analysis of genetically structured populations. BMC Genetics 11:94. doi:10.1186/1471-
2156-11-94

gt_dapc Discriminant Analysis of Principal Components for gen_tibble

Description

This function implements the Discriminant Analysis of Principal Components (DAPC, Jombart et
al. 2010). This method describes the diversity between pre-defined groups. When groups are
unknown, use gt_cluster_pca() to infer genetic clusters. See ’details’ section for a succinct
description of the method, and the vignette in the package adegenet ("adegenet-dapc") for a tuto-
rial. This function returns objects of class adegenet::dapc which are compatible with methods
from adegenet; graphical methods for DAPC are documented in adegenet::scatter.dapc (see ?scat-
ter.dapc).

Usage

gt_dapc(
x,
pop = NULL,
n_pca = NULL,
n_da = NULL,
loadings_by_locus = TRUE,
pca_info = FALSE

)

Arguments

x an object of class gt_pca, or its subclass gt_cluster_pca

pop either a factor indicating the group membership of individuals; or an integer
defining the desired k if x is a gt_cluster_pca; or NULL, if ’x’ is a gt_cluster_pca
and contain an element ’best_k’, usually generated with gt_cluster_pca_best_k(),
which will be used to select the clustering level.

n_pca number of principal components to be used in the Discriminant Analysis. If
NULL, k-1 will be used.

n_da an integer indicating the number of axes retained in the Discriminant Analysis
step.

gt_extract_f2 23

loadings_by_locus

a logical indicating whether the loadings and contribution of each locus should
be stored (TRUE, default) or not (FALSE). Such output can be useful, but can
also create large matrices when there are a lot of loci and many dimensions.

pca_info a logical indicating whether information about the prior PCA should be stored
(TRUE, default) or not (FALSE). This information is required to predict group
membership of new individuals using predict, but makes the object slightly big-
ger.

Details

The Discriminant Analysis of Principal Components (DAPC) is designed to investigate the genetic
structure of biological populations. This multivariate method consists in a two-steps procedure.
First, genetic data are transformed (centred, possibly scaled) and submitted to a Principal Compo-
nent Analysis (PCA). Second, principal components of PCA are submitted to a Linear Discriminant
Analysis (LDA). A trivial matrix operation allows to express discriminant functions as linear com-
bination of alleles, therefore allowing one to compute allele contributions. More details about the
computation of DAPC are to be found in the indicated reference.

Value

an object of class adegenet::dapc

References

Jombart T, Devillard S and Balloux F (2010) Discriminant analysis of principal components: a new
method for the analysis of genetically structured populations. BMC Genetics 11:94. doi:10.1186/1471-
2156-11-94 Thia, J. A. (2023). Guidelines for standardizing the application of discriminant analysis
of principal components to genotype data. Molecular Ecology Resources, 23, 523–538. https://doi.org/10.1111/1755-
0998.13706

gt_extract_f2 Compute and store blocked f2 statistics for ADMIXTOOLS 2

Description

This function prepares data for various ADMIXTOOLS 2 functions fro the package ADMIXTOOLS
2. It takes a gen_tibble, computes allele frequencies and blocked f2-statistics, and writes the
results to outdir. It is equivalent to admixtools::extract_f2().

Usage

gt_extract_f2(
.x,
outdir = NULL,
blgsize = 0.05,
maxmem = 8000,

24 gt_extract_f2

maxmiss = 0,
minmaf = 0,
maxmaf = 0.5,
minac2 = FALSE,
outpop = NULL,
outpop_scale = TRUE,
transitions = TRUE,
transversions = TRUE,
overwrite = FALSE,
adjust_pseudohaploid = TRUE,
fst = TRUE,
afprod = TRUE,
poly_only = c("f2"),
apply_corr = TRUE,
n_cores = 1,
quiet = FALSE

)

Arguments

.x a gen_tibble

outdir Directory where data will be stored.

blgsize SNP block size in Morgan. Default is 0.05 (5 cM). If blgsize is 100 or greater,
if will be interpreted as base pair distance rather than centimorgan distance.

maxmem Maximum amount of memory to be used. If the required amount of memory
exceeds maxmem, allele frequency data will be split into blocks, and the compu-
tation will be performed separately on each block pair. This doesn’t put a precise
cap on the amount of memory used (it used to at some point). Set this parameter
to lower values if you run out of memory while running this function. Set it to
higher values if this function is too slow and you have lots of memory.

maxmiss Discard SNPs which are missing in a fraction of populations higher than maxmiss

minmaf Discard SNPs with minor allele frequency less than minmaf

maxmaf Discard SNPs with minor allele frequency greater than than maxmaf

minac2 Discard SNPs with allele count lower than 2 in any population (default FALSE).
This option should be set to TRUE when computing f3-statistics where one pop-
ulation consists mostly of pseudohaploid samples. Otherwise heterozygosity
estimates and thus f3-estimates can be biased. minac2 == 2 will discard SNPs
with allele count lower than 2 in any non-singleton population (this option is
experimental and is based on the hypothesis that using SNPs with allele count
lower than 2 only leads to biases in non-singleton populations). Note that, While
the minac2 option discards SNPs with allele count lower than 2 in any popula-
tion, the qp3pop function will only discard SNPs with allele count lower than 2
in the first (target) population (when the first argument is the prefix of a geno-
type file; i.e. it is applied directly to a genotype file, not via precomputing f2
from a gen_tibble).

outpop Keep only SNPs which are heterozygous in this population

gt_get_file_names 25

outpop_scale Scale f2-statistics by the inverse outpop heterozygosity (1/(p*(1-p))). Pro-
viding outpop and setting outpop_scale to TRUE will give the same results as
the original qpGraph when the outpop parameter has been set, but it has the dis-
advantage of treating one population different from the others. This may limit
the use of these f2-statistics for other models.

transitions Set this to FALSE to exclude transition SNPs

transversions Set this to FALSE to exclude transversion SNPs

overwrite Overwrite existing files in outdir

adjust_pseudohaploid

Genotypes of pseudohaploid samples are usually coded as 0 or 2, even though
only one allele is observed. adjust_pseudohaploid ensures that the observed
allele count increases only by 1 for each pseudohaploid sample. If TRUE (de-
fault), samples that don’t have any genotypes coded as 1 among the first 1000
SNPs are automatically identified as pseudohaploid. This leads to slightly more
accurate estimates of f-statistics. Setting this parameter to FALSE treats all sam-
ples as diploid and is equivalent to the ADMIXTOOLS inbreed: NO option. Set-
ting adjust_pseudohaploid to an integer n will check the first n SNPs instead
of the first 1000 SNPs.

fst Write files with pairwise FST for every population pair. Setting this to FALSE
can make extract_f2 faster and will require less memory.

afprod Write files with allele frequency products for every population pair. Setting this
to FALSE can make extract_f2 faster and will require less memory.

poly_only Specify whether SNPs with identical allele frequencies in every population should
be discarded (poly_only = TRUE), or whether they should be used (poly_only
= FALSE). By default (poly_only = c("f2")), these SNPs will be used to com-
pute FST and allele frequency products, but not to compute f2 (this is the default
option in the original ADMIXTOOLS).

apply_corr Apply small-sample-size correction when computing f2-statistics (default TRUE)

n_cores Parallelize computation across n_cores cores.

quiet Suppress printing of progress updates

Value

SNP metadata (invisibly)

gt_get_file_names Get the names of files storing the genotypes of a gen_tibble

Description

A function to return the names of the files used to store data in a gen_tibble. Specifically, this
returns the .rds file storing the big

26 gt_impute_simple

Usage

gt_get_file_names(x)

Arguments

x a gen_tibble

Value

a character vector with the names and paths of the two files

gt_has_imputed Checks if a gen_tibble has been imputed

Description

This function checks if a dataset has been imputed. Note that having imputation does not mean that
the imputed values are used.

Usage

gt_has_imputed(x)

Arguments

x a gen_tibble

Value

boolean TRUE or FALSE depending on whether the dataset has been imputed

gt_impute_simple Simple imputation based on allele frequencies

Description

This function provides a very simple imputation algorithm for gen_tibble objects by using the
mode, mean or sampling from the allele frequencies. Each locus is imputed independently (and
thus linkage information is ignored). It is a wrapper around bigsnpr::snp_fastImputeSimple().

Usage

gt_impute_simple(x, method = c("mode", "mean0", "random"), n_cores = 1)

gt_king 27

Arguments

x a gen_tibble with missing data

method one of

• ’mode’: the most frequent genotype
• ’mean0’: the mean rounded to the nearest integer
• ’random’: randomly sample a genotype based on the observed allele fre-

quencies

n_cores the number of cores to be used

Value

a gen_tibble with imputed genotypes

gt_king Compute the KING-robust Matrix for a a gen_tibble object

Description

This function computes the KING-robust estimator of kinship.

Usage

gt_king(
x,
as_matrix = FALSE,
block_size = bigstatsr::block_size(length(loci_names(x)))

)

Arguments

x a gen_tibble object.

as_matrix boolean, determining whether the results should be a square symmetrical matrix
(TRUE), or a tidied tibble (FALSE, the default)

block_size maximum number of loci read at once. More loci should improve speed, but
will tax memory.

Details

Note that monomorphic sites are currently considered. What does PLINK do???

28 gt_pca

gt_load Load a gen_tibble

Description

Load a gen_tibble previously saved with gt_save(). If the .rds and .bk files have not been moved,
they should be found automatically. If they were moved, use reattach_to to point to the .rds file
(the .bk file needs to be in the same directory as the .rds file).

Usage

gt_load(file = NULL, reattach_to = NULL)

Arguments

file the file name, including the full path. If it does not end with .gt, the extension
will be added.

reattach_to the file name, including the full path, of the .rds file if it was moved. It assumes
that the .bk file is found in the same path. You should be able to leave this to
NULL unless you have moved the files.

Value

a gen_tibble

See Also

gt_save()

gt_pca Principal Component Analysis for gen_tibble objects

Description

There are a number of PCA methods available for gen_tibble objects. They are mostly designed
to work on very large datasets, so they only compute a limited number of components. For smaller
datasets, gt_partialSVD allows the use of partial (truncated) SVD to fit the PCA; this method is
suitable when the number of individuals is much smaller than the number of loci. For larger dataset,
gt_randomSVD is more appropriate. Finally, there is a method specifically designed for dealing
with LD in large datasets, gt_autoSVD. Whilst this is arguably the best option, it is somewhat data
hungry, and so only suitable for very large datasets (hundreds of individuals with several hundred
thousands markers, or larger).

Details

NOTE: using gt_pca_autoSVD with a small dataset will likely cause an error, see man page for
details.

gt_pcadapt 29

gt_pcadapt pcadapt analysis on a gen_tibble object

Description

pcadapt is an algorithm that detects genetic markers under selection. It is based on the principal
component analysis (PCA) of the genotypes of the individuals. The method is described in Luu et
al. (2017), See the R package pcadapt, which provides extensive documentation and examples.

Usage

gt_pcadapt(x, pca, k, n_cores = 1)

Arguments

x A gen_tibble object.

pca a gt_pca object, as returned by gt_pca_partialSVD() or gt_pca_randomSVD().

k Number of principal components to use in the analysis.

n_cores Number of cores to use.

Details

Internally, this function uses the snp_pcadapt function from the bigsnpr package.

Value

An object of subclass gt_pcadapt, a subclass of mhtest.

gt_pca_autoSVD PCA controlling for LD for gen_tibble objects

Description

This function performs Principal Component Analysis on a gen_tibble, using a fast truncated
SVD with initial pruning and then iterative removal of long-range LD regions. This function is a
wrapper for bigsnpr::snp_autoSVD()

https://doi.org/10.1534/genetics.116.195214
https://doi.org/10.1534/genetics.116.195214

30 gt_pca_autoSVD

Usage

gt_pca_autoSVD(
x,
k = 10,
fun_scaling = bigsnpr::snp_scaleBinom(),
thr_r2 = 0.2,
use_positions = TRUE,
size = 100/thr_r2,
roll_size = 50,
int_min_size = 20,
alpha_tukey = 0.05,
min_mac = 10,
max_iter = 5,
n_cores = 1,
verbose = TRUE

)

Arguments

x a gen_tbl object

k Number of singular vectors/values to compute. Default is 10. This algorithm
should be used to compute a few singular vectors/values.

fun_scaling Usually this can be left unset, as it defaults to bigsnpr::snp_scaleBinom(),
which is the appropriate function for biallelic SNPs. Alternatively it is possible
to use custom function (see bigsnpr::snp_autoSVD() for details.

thr_r2 Threshold over the squared correlation between two SNPs. Default is 0.2. Use
NA if you want to skip the clumping step. size

use_positions a boolean on whether the position is used to define size, or whether the size
should be in number of SNPs. Default is TRUE

size For one SNP, window size around this SNP to compute correlations. Default is
100 / thr_r2 for clumping (0.2 -> 500; 0.1 -> 1000; 0.5 -> 200). If not providing
infos.pos (NULL, the default), this is a window in number of SNPs, otherwise it
is a window in kb (genetic distance). I recommend that you provide the positions
if available.

roll_size Radius of rolling windows to smooth log-p-values. Default is 50.

int_min_size Minimum number of consecutive outlier SNPs in order to be reported as long-
range LD region. Default is 20.

alpha_tukey Default is 0.1. The type-I error rate in outlier detection (that is further corrected
for multiple testing).

min_mac Minimum minor allele count (MAC) for variants to be included. Default is 10.

max_iter Maximum number of iterations of outlier detection. Default is 5.

n_cores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr::nb_cores().

verbose Output some information on the iterations? Default is TRUE.

gt_pca_partialSVD 31

Details

Using gt_pca_autoSVD requires a reasonably large dataset, as the function iteratively removes re-
gions of long range LD.

Value

a gt_pca object, which is a subclass of bigSVD; this is an S3 list with elements: A named list (an
S3 class "big_SVD") of

• d, the eigenvalues (singular values, i.e. as variances),

• u, the scores for each sample on each component (the left singular vectors)

• v, the loadings (the right singular vectors)

• center, the centering vector,

• scale, the scaling vector,

• method, a string defining the method (in this case ’autoSVD’),

• call, the call that generated the object.

Note: rather than accessing these elements directly, it is better to use tidy and augment. See
gt_pca_tidiers.

gt_pca_partialSVD PCA for gen_tibble objects by partial SVD

Description

This function performs Principal Component Analysis on a gen_tibble, by partial SVD through
the eigen decomposition of the covariance. It works well if the number of individuals is much
smaller than the number of loci; otherwise, gt_pca_randomSVD() is a better option. This function
is a wrapper for bigstatsr::big_SVD().

Usage

gt_pca_partialSVD(x, k = 10, fun_scaling = bigsnpr::snp_scaleBinom())

Arguments

x a gen_tbl object

k Number of singular vectors/values to compute. Default is 10. This algorithm
should be used to compute a few singular vectors/values.

fun_scaling Usually this can be left unset, as it defaults to bigsnpr::snp_scaleBinom(),
which is the appropriate function for biallelic SNPs. Alternatively it is possible
to use custom function (see bigsnpr::snp_autoSVD() for details.

32 gt_pca_randomSVD

Value

a gt_pca object, which is a subclass of bigSVD; this is an S3 list with elements: A named list (an
S3 class "big_SVD") of

• d, the eigenvalues (singular values, i.e. as variances),

• u, the scores for each sample on each component (the left singular vectors)

• v, the loadings (the right singular vectors)

• center, the centering vector,

• scale, the scaling vector,

• method, a string defining the method (in this case ’partialSVD’),

• call, the call that generated the object.

Note: rather than accessing these elements directly, it is better to use tidy and augment. See
gt_pca_tidiers.

gt_pca_randomSVD PCA for gen_tibble objects by randomized partial SVD

Description

This function performs Principal Component Analysis on a gen_tibble, by randomised partial
SVD based on the algorithm in RSpectra (by Yixuan Qiu and Jiali Mei).
This algorithm is linear in time in all dimensions and is very memory-efficient. Thus, it can be used
on very large big.matrices. This function is a wrapper for bigstatsr::big_randomSVD()

Usage

gt_pca_randomSVD(
x,
k = 10,
fun_scaling = bigsnpr::snp_scaleBinom(),
tol = 1e-04,
verbose = FALSE,
n_cores = 1,
fun_prod = bigstatsr::big_prodVec,
fun_cprod = bigstatsr::big_cprodVec

)

Arguments

x a gen_tbl object

k Number of singular vectors/values to compute. Default is 10. This algorithm
should be used to compute a few singular vectors/values.

fun_scaling Usually this can be left unset, as it defaults to bigsnpr::snp_scaleBinom(),
which is the appropriate function for biallelic SNPs. Alternatively it is possible
to use custom function (see bigsnpr::snp_autoSVD() for details.

gt_roh_window 33

tol Precision parameter of svds. Default is 1e-4.

verbose Should some progress be printed? Default is FALSE.

n_cores Number of cores used.

fun_prod Function that takes 6 arguments (in this order):

• a matrix-like object X,

• a vector x,

• a vector of row indices ind.row of X,

• a vector of column indices ind.col of X,

• a vector of column centers (corresponding to ind.col),

• a vector of column scales (corresponding to ind.col), and compute the
product of X (subsetted and scaled) with x.

fun_cprod Same as fun.prod, but for the transpose of X.

Value

a gt_pca object, which is a subclass of bigSVD; this is an S3 list with elements: A named list (an
S3 class "big_SVD") of

• d, the eigenvalues (singular values, i.e. as variances),

• u, the scores for each sample on each component (the left singular vectors)

• v, the loadings (the right singular vectors)

• center, the centering vector,

• scale, the scaling vector,

• method, a string defining the method (in this case ’randomSVD’),

• call, the call that generated the object.

Note: rather than accessing these elements directly, it is better to use tidy and augment. See
gt_pca_tidiers.

gt_roh_window Detect runs of homozygosity using a sliding-window approach

Description

This function uses a sliding-window approach to look for runs of homozygosity (or heterozygosity)
in a diploid genome. This function uses the package selectRUNS, which implements an approach
equivalent to the one in PLINK.

34 gt_roh_window

Usage

gt_roh_window(
x,
window_size = 15,
threshold = 0.05,
min_snp = 3,
heterozygosity = FALSE,
max_opp_window = 1,
max_miss_window = 1,
max_gap = 10^6,
min_length_bps = 1000,
min_density = 1/1000,
max_opp_run = NULL,
max_miss_run = NULL

)

Arguments

x a gen_tibble

window_size the size of sliding window (number of SNP loci) (default = 15)

threshold the threshold of overlapping windows of the same state (homozygous/heterozygous)
to call a SNP in a RUN (default = 0.05)

min_snp minimum n. of SNP in a RUN (default = 3)

heterozygosity should we look for runs of heterozygosity (instead of homozygosity? (default =
FALSE)

max_opp_window max n. of SNPs of the opposite type (e.g. heterozygous snps for runs of ho-
mozygosity) in the sliding window (default = 1)

max_miss_window

max. n. of missing SNP in the sliding window (default = 1)

max_gap max distance between consecutive SNP to be still considered a potential run
(default = 10^6 bps)

min_length_bps minimum length of run in bps (defaults to 1000 bps = 1 kbps)

min_density minimum n. of SNP per kbps (defaults to 0.1 = 1 SNP every 10 kbps)

max_opp_run max n. of opposite genotype SNPs in the run (optional)

max_miss_run max n. of missing SNPs in the run (optional)

Details

This function returns a data frame with all runs detected in the dataset. This data frame can then be
written out to a csv file. The data frame is, in turn, the input for other functions of the detectRUNS
package that create plots and produce statistics from the results (see plots and statistics functions in
this manual, and/or refer to the detectRUNS vignette).

If the gen_tibble is grouped, then the grouping variable is used to fill in the group table. Otherwise,
the group ’column’ is filled with the same values as the ’id’ column

gt_save 35

Value

A dataframe with RUNs of Homozygosity or Heterozygosity in the analysed dataset. The returned
dataframe contains the following seven columns: "group", "id", "chrom", "nSNP", "from", "to",
"lengthBps" (group: population, breed, case/control etc.; id: individual identifier; chrom: chromo-
some on which the run is located; nSNP: number of SNPs in the run; from: starting position of the
run, in bps; to: end position of the run, in bps; lengthBps: size of the run)

Examples

don't run the example
if (FALSE) {
sheep_ped <- system.file("extdata", "Kijas2016_Sheep_subset.ped",

package="detectRUNS")
sheep_gt <- tidypopgen::gen_tibble(sheep_ped, backingfile = tempfile(),

quiet=TRUE)
sheep_gt <- sheep_gt %>% group_by(population)
sheep_roh <- gt_roh_window(sheep_gt)
detectRUNS::plot_Runs(runs = sheep_roh)
}

gt_save Save a gen_tibble

Description

Save the tibble (and update the backing files). The gen_tibble object is saved to a file with exten-
sion .gt, togethe with update its .rds and .bk files. Note that multiple .gt files can be linked to the
same .rds and .bk files; generally, this occurs when we create multiple subsets of the data. The .gt
file then stores the information on what subset of the full dataset we are interested in, whilst the .rds
and .bk file store the full dataset. To reload a gen_tibble, you can pass the name of the .gt file with
gt_load().

Usage

gt_save(x, file_name = NULL, quiet = FALSE)

Arguments

x a gen_tibble

file_name the file name, including the full path. If it does not end with .gt, the extension
will be added.

quiet boolean to suppress information about hte files

Value

the file name and path of the .gt file, together with the .rds and .bk files

36 gt_uses_imputed

See Also

gt_load()

gt_set_imputed Sets a gen_tibble to use imputed data

Description

This function sets or unsets the use of imputed data. For some analysis, such as PCA, that does not
allow for missing data, we have to use imputation, but for other analysis it might be preferable to
allow for missing data.

Usage

gt_set_imputed(x, set = NULL)

Arguments

x a gen_tibble

set a boolean defining whether imputed data should be used

gt_uses_imputed Checks if a gen_tibble uses imputed data

Description

This function checks if a dataset uses imputed data. Note that it is possible to have a dataset that
has been imputed but it is currently not using imputation.

Usage

gt_uses_imputed(x)

Arguments

x a gen_tibble

Value

boolean TRUE or FALSE depending on whether the dataset is using the imputed values

indiv_het_obs 37

indiv_het_obs Estimate individual observed heterozygosity

Description

Estimate observed heterozygosity (H_obs) for each individual (i.e. the frequency of loci that are
heterozygous in an individual).

Usage

indiv_het_obs(.x, ...)

S3 method for class 'tbl_df'
indiv_het_obs(.x, ...)

S3 method for class 'vctrs_bigSNP'
indiv_het_obs(.x, ...)

S3 method for class 'grouped_df'
indiv_het_obs(.x, ...)

Arguments

.x a vector of class vctrs_bigSNP (usually the genotype column of a gen_tibble
object), or a gen_tibble.

... currently unused.

Value

a vector of heterozygosities, one per individuals in the gen_tibble

indiv_missingness Estimate individual missingness

Description

Estimate missingness for each individual (i.e. the frequency of missing genotypes in an individual).

Usage

indiv_missingness(.x, as_counts = FALSE, ...)

S3 method for class 'tbl_df'
indiv_missingness(.x, as_counts = FALSE, ...)

38 indiv_ploidy

S3 method for class 'vctrs_bigSNP'
indiv_missingness(.x, as_counts = FALSE, ...)

S3 method for class 'grouped_df'
indiv_missingness(.x, as_counts = FALSE, ...)

Arguments

.x a vector of class vctrs_bigSNP (usually the genotype column of a gen_tibble
object), or a gen_tibble.

as_counts boolean defining whether the count of NAs (rather than the rate) should be re-
turned. It defaults to FALSE (i.e. rates are returned by default).

... currently unused.

Value

a vector of heterozygosities, one per individuals in the gen_tibble

indiv_ploidy Return individual ploidy

Description

Returns the ploidy for each individual.

Usage

indiv_ploidy(.x, ...)

S3 method for class 'tbl_df'
indiv_ploidy(.x, ...)

S3 method for class 'vctrs_bigSNP'
indiv_ploidy(.x, ...)

S3 method for class 'grouped_df'
indiv_ploidy(.x, ...)

Arguments

.x a gen_tibble, or a vector of class vctrs_bigSNP (usually the genotype column
of a gen_tibble object)

... currently unused.

Value

a vector of ploidy, one per individuals in the gen_tibble

loci_alt_freq 39

loci_alt_freq Estimate allele frequencies at each each locus

Description

Allele frequencies can be estimates as minimum allele frequencies (MAF) with loci_maf() or the
frequency of the alternate allele (with loci_alt_freq()). The latter are in line with the genotypes
matrix (e.g. as extracted by show_loci()). Most users will be in interested in the MAF, but the raw
frequencies might be useful when computing aggregated statistics.

Usage

loci_alt_freq(.x, ...)

S3 method for class 'tbl_df'
loci_alt_freq(.x, ...)

S3 method for class 'vctrs_bigSNP'
loci_alt_freq(.x, ...)

S3 method for class 'grouped_df'
loci_alt_freq(.x, n_cores = bigstatsr::nb_cores(), ...)

loci_maf(.x, ...)

S3 method for class 'tbl_df'
loci_maf(.x, ...)

S3 method for class 'vctrs_bigSNP'
loci_maf(.x, ...)

S3 method for class 'grouped_df'
loci_maf(.x, n_cores = bigstatsr::nb_cores(), ...)

Arguments

.x a vector of class vctrs_bigSNP (usually the genotypes column of a gen_tibble
object), or a gen_tibble.

... other arguments passed to specific methods, currently unused.

n_cores number of cores to be used, it defaults to bigstatsr::nb_cores()

Value

a vector of frequencies, one per locus

40 loci_hwe

loci_chromosomes Get the chromosomes of loci in a gen_tibble

Description

Extract the loci chromosomes from a gen_tibble (or directly from its genotype column).

Usage

loci_chromosomes(.x, ...)

S3 method for class 'tbl_df'
loci_chromosomes(.x, ...)

S3 method for class 'vctrs_bigSNP'
loci_chromosomes(.x, ...)

Arguments

.x a gen_tibble, or a vector of class vctrs_bigSNP (usually the genotype column
of a gen_tibble object).

... currently unused.

Value

a character vector of chromosomes

loci_hwe Test Hardy-Weinberg equilibrium at each locus

Description

Return the p-value from an exact test of HWE.

Usage

loci_hwe(.x, ...)

S3 method for class 'tbl_df'
loci_hwe(.x, mid_p = TRUE, ...)

S3 method for class 'vctrs_bigSNP'
loci_hwe(.x, mid_p = TRUE, ...)

S3 method for class 'grouped_df'
loci_hwe(.x, ...)

loci_ld_clump 41

Arguments

.x a vector of class vctrs_bigSNP (usually the genotypes column of a gen_tibble
object), or a gen_tibble.

... not used.

mid_p boolean on whether the mid-p value should be computed. Default is TRUE, as
in PLINK.

Details

This function uses the original C++ algorithm from PLINK 1.90.

NOTE There are no tests for this function yet! Unit tests are needed.

Value

a vector of probabilities from HWE exact test, one per locus

Author(s)

the C++ algorithm was written by Christopher Chang for PLINK 1.90, based on original code by
Jan Wigginton (the code was released under GPL3).

loci_ld_clump Clump loci based on a Linkage Disequilibrium threshold

Description

This function uses clumping to remove SNPs at high LD. When used with its default options,
clumping based on MAF is similar to standard pruning (as done by PLINK with "–indep-pairwise
(size+1) 1 thr.r2", but it results in a better spread of SNPs over the chromosome.

Usage

loci_ld_clump(.x, ...)

S3 method for class 'tbl_df'
loci_ld_clump(.x, ...)

S3 method for class 'vctrs_bigSNP'
loci_ld_clump(
.x,
S = NULL,
thr_r2 = 0.2,
size = 100/thr_r2,
exclude = NULL,
use_positions = TRUE,
n_cores = 1,

42 loci_ld_clump

return_id = FALSE,
...

)

S3 method for class 'grouped_df'
loci_ld_clump(.x, ...)

Arguments

.x a gen_tibble object

... currently not used.

S A vector of loci statistics which express the importance of each SNP (the more
important is the SNP, the greater should be the corresponding statistic).
For example, if S follows the standard normal distribution, and "important"
means significantly different from 0, you must use abs(S) instead.
If not specified, MAFs are computed and used.

thr_r2 Threshold over the squared correlation between two SNPs. Default is 0.2.

size For one SNP, window size around this SNP to compute correlations. Default is
100 / thr.r2 for clumping (0.2 -> 500; 0.1 -> 1000; 0.5 -> 200). If use_positions
= FALSE, this is a window in number of SNPs, otherwise it is a window in kb
(genetic distance). Ideally, use positions, as they provide a more sensible ap-
proach.

exclude Vector of SNP indices to exclude anyway. For example, can be used to exclude
long-range LD regions (see Price2008). Another use can be for thresholding
with respect to p-values associated with S.

use_positions boolean, if TRUE (the default), size is in kb, if FALSE size is the number of
SNPs.

n_cores number of cores to be used

return_id boolean on whether the id of SNPs to keep should be returned. It defaults to
FALSE, which returns a vector of booleans (TRUE or FALSE)

Details

Any missing values in the genotypes of a gen_tibble passed to loci_ld_clump will cause an error.
To deal with missingness, see gt_impute_simple().

Value

a boolean vector indicating whether the SNP should be kept (if ’return_id = FALSE’, the default),
else a vector of SNP indices to be kept (if ’return_id = TRUE’)

loci_missingness 43

loci_missingness Estimate missingness at each locus

Description

Estimate the rate of missingness at each locus.

Usage

loci_missingness(.x, as_counts = FALSE, ...)

S3 method for class 'tbl_df'
loci_missingness(.x, as_counts = FALSE, ...)

S3 method for class 'vctrs_bigSNP'
loci_missingness(.x, as_counts = FALSE, ...)

S3 method for class 'grouped_df'
loci_missingness(.x, as_counts = FALSE, n_cores = bigstatsr::nb_cores(), ...)

Arguments

.x a vector of class vctrs_bigSNP (usually the genotypes column of a gen_tibble
object), or a gen_tibble.

as_counts boolean defining whether the count of NAs (rather than the rate) should be re-
turned. It defaults to FALSE (i.e. rates are returned by default).

... other arguments passed to specific methods.

n_cores number of cores to be used, it defaults to bigstatsr::nb_cores()

Value

a vector of frequencies, one per locus

loci_names Get the names of loci in a gen_tibble

Description

Extract the loci names from a gen_tibble (or directly from its genotype column).

44 loci_transitions

Usage

loci_names(.x, ...)

S3 method for class 'tbl_df'
loci_names(.x, ...)

S3 method for class 'vctrs_bigSNP'
loci_names(.x, ...)

Arguments

.x a vector of class vctrs_bigSNP (usually the genotype column of a gen_tibble
object), or a gen_tibble.

... currently unused.

Value

a character vector of names

loci_transitions Find transitions

Description

Use the loci table to define which loci are transitions

Usage

loci_transitions(.x, ...)

S3 method for class 'tbl_df'
loci_transitions(.x, ...)

S3 method for class 'vctrs_bigSNP'
loci_transitions(.x, ...)

S3 method for class 'grouped_df'
loci_transitions(.x, ...)

Arguments

.x a vector of class vctrs_bigSNP (usually the genotype column of a gen_tibble
object), or a gen_tibble.

... other arguments passed to specific methods.

Value

a logical vector defining which loci are transitions

loci_transversions 45

loci_transversions Find transversions

Description

Use the loci table to define which loci are transversions

Usage

loci_transversions(.x, ...)

S3 method for class 'tbl_df'
loci_transversions(.x, ...)

S3 method for class 'vctrs_bigSNP'
loci_transversions(.x, ...)

S3 method for class 'grouped_df'
loci_transversions(.x, ...)

Arguments

.x a vector of class vctrs_bigSNP (usually the genotype column of a gen_tibble
object), or a gen_tibble.

... other arguments passed to specific methods.

Value

a logical vector defining which loci are transversions

pairwise_allele_sharing

Compute the Pairwise Allele Sharing Matrix for a gen_tibble object

Description

This function computes the Allele Sharing matrix. Estimates Allele Sharing (matching in hierfstat))
between pairs of individuals (for each locus, gives 1 if the two individuals are homozygous for the
same allele, 0 if they are homozygous for a different allele, and 1/2 if at least one individual is
heterozygous. Matching is the average of these 0, 1/2 and 1s)

46 pairwise_ibs

Usage

pairwise_allele_sharing(
x,
as_matrix = FALSE,
block_size = bigstatsr::block_size(count_loci(x))

)

Arguments

x a gen_tibble object.

as_matrix boolean, determining whether the results should be a square symmetrical matrix
(TRUE), or a tidied tibble (FALSE, the default)

block_size maximum number of loci read at once. More loci should improve speed, but
will tax memory.

Value

a matrix of allele sharing between all pairs of individuals

pairwise_ibs Compute the Identity by State Matrix for a gen_tibble object

Description

This function computes the IBS matrix.

Usage

pairwise_ibs(
x,
as_matrix = FALSE,
type = c("proportion", "adjusted_counts", "raw_counts"),
block_size = bigstatsr::block_size(count_loci(x))

)

Arguments

x a gen_tibble object.

as_matrix boolean, determining whether the results should be a square symmetrical matrix
(TRUE), or a tidied tibble (FALSE, the default)

type one of "proportion" (equivalent to "ibs" in PLINK), "adjusted_counts" ("dis-
tance" in PLINK), and "raw_counts" (the counts of identical alleles and non-
missing alleles, from which the two other quantities are computed)

block_size maximum number of loci read at once. More loci should improve speed, but
will tax memory.

pairwise_pop_fst 47

Details

Note that monomorphic sites are currently counted. Should we filter them beforehand? What does
plink do?

Value

a bigstatsr::FBM of proportion or adjusted counts, or a list of two bigstatsr::FBM matrices, one of
counts of IBS by alleles, and one of number of valid alleles (i.e. 2n_loci - 2missing_loci)

pairwise_pop_fst Compute pairwise population Fst

Description

This function computes pairwise Fst. The following methods are implemented:

• ’Hudson’: Hudson’s formulation, as derived in Bhatia et al (2013) for diploids.

• ’Nei86’ : Gst according to Nei (1986), as derived in Bhatia et al (2013) for diploids.

• ’Nei87’ : Fst according to Nei (1987) - this is equivalent to hierfstat::pairwise.neifst(),
and includes the correction for heterozygosity when computing Ht

• ’WC84’ : Weir and Cockerham (1984), as derived in Bhatia et al (2013) for diploids.

Usage

pairwise_pop_fst(
.x,
by_locus = FALSE,
method = c("Hudson", "Nei87", "Nei86", "WC84"),
n_cores = bigstatsr::nb_cores()

)

Arguments

.x a grouped gen_tibble (as obtained by using dplyr::group_by())

by_locus boolean, determining whether Fst should be returned by locus(TRUE), or as a
single genome wide value obtained by taking the ratio of the mean numerator
and denominator (FALSE, the default).

method one of ’Hudson’, ’Nei86’, ’Nei87’, and ’WC84’

n_cores number of cores to be used, it defaults to bigstatsr::nb_cores()

Details

For all formulae, the genome wide estimate is obtained by taking the ratio of the mean numerators
and denominators over all relevant SNPs.

48 pop_fis

Value

a tibble of genome-wide pairwise Fst values with each pairwise combination as a row if "by_locus=FALSE",
else a list including the tibble of genome-wide values as well as a matrix with pairwise Fst by locus
with loci as rows and and pairwise combinations as columns.

References

Bhatia G, Patterson N, Sankararaman S, Price AL. Estimating and Interpreting FST: The Impact of
Rare Variants. Genome Research. 2013;23(9):1514–1521.

Nei, M. (1987) Molecular Evolutionary Genetics. Columbia University Press

pop_fis Compute population specific FIS

Description

This function computes population specific FIS (as computed by hierfstat::fis.dosage()).

Usage

pop_fis(.x, include_global = FALSE, allele_sharing_mat = NULL)

Arguments

.x a grouped gen_tibble (as obtained by using dplyr::group_by())

include_global boolean determining whether, besides the population specific fis, a global fis
should be appended. Note that this will return a vector of n populations plus 1
(the global value)

allele_sharing_mat

optional, the matrix of Allele Sharing returned by pairwise_allele_sharing()
with as_matrix=TRUE. As a number of statistics can be derived from the Allele
Sharing matrix, it it sometimes more efficient to pre-compute this matrix.

Value

a vector of population specific fis (plus the global value if include_global=TRUE)

pop_fst 49

pop_fst Compute population specific Fst

Description

This function computes population specific Fst (as computed by hierfstat::fst.dosage()).

Usage

pop_fst(.x, include_global = FALSE, allele_sharing_mat = NULL)

Arguments

.x a grouped gen_tibble (as obtained by using dplyr::group_by())

include_global boolean determining whether, besides the population specific Fst, a global Fst
should be appended. Note that this will return a vector of n populations plus 1
(the global value)

allele_sharing_mat

optional, the matrix of Allele Sharing returned by pairwise_allele_sharing()
with as_matrix=TRUE. As a number of statistics can be derived from the Allele
Sharing matrix,

Value

a vector of population specific Fst (plus the global value if include_global=TRUE)

predict.gt_pca Predict scores of a PCA

Description

Predict the PCA scores for a gt_pca, either for the original data or projecting new data.

Usage

S3 method for class 'gt_pca'
predict(
object,
new_data = NULL,
project_method = c("none", "simple", "OADP", "least_squares"),
lsq_pcs = c(1, 2),
block_size = NULL,
n_cores = 1,
...

)

50 qc_report_indiv

Arguments

object the gt_pca object

new_data a gen_tibble if scores are requested for a new dataset

project_method a string taking the value of either "simple", "OADP" (Online Augmentation,
Decomposition, and Procrustes (OADP) projection), or "least_squares" (as done
by SMARTPCA)

lsq_pcs a vector of length two with the values of the two principal components to use for
the least square fitting. Only relevant ifproject_method = 'least_squares'

block_size number of loci read simultaneously (larger values will speed up computation,
but require more memory)

n_cores number of cores

... no used

Value

a matrix of predictions, with samples as rows and components as columns. The number of compo-
nents depends on how many were estimated in the gt_pca object.

References

Zhang et al (2020). Fast and robust ancestry prediction using principal component analysis 36(11):
3439–3446.

qc_report_indiv Create a Quality Control report for individuals

Description

#’ Return QC information to assess loci (Observed heterozygosity and missingness).

Usage

qc_report_indiv(.x, kings_threshold = NULL, ...)

Arguments

.x a gen_tibble object.
kings_threshold

an optional numeric, a threshold of relatedness for the sample

... further arguments to pass

Value

a tibble with 2 elements: het_obs and missingness

qc_report_loci 51

qc_report_loci Create a Quality Control report for loci

Description

Return QC information to assess loci (MAF, missingness and HWE test).

Usage

qc_report_loci(.x, ...)

Arguments

.x a gen_tibble object.

... currently unused the HWE test.

Value

a tibble with 3 elements: maf, missingness and hwe_p

rbind.gen_tbl Combine two gen_tibbles

Description

This function combined two gen_tibbles. By defaults, it subsets the loci and swaps ref and alt
alleles to make the two datasets compatible (this behaviour can be switched off with as_is). The
first object is used as a "reference" , and SNPs in the other dataset will be flipped and/or alleles
swapped as needed. SNPs that have different alleles in the two datasets (i.e. triallelic) will also
be dropped. There are also options (NOT default) to attempt strand flipping to match alleles (often
needed in human datasets from different SNP chips), and remove ambiguous alleles (C/G and A/T)
where the correct strand can not be guessed.

Usage

S3 method for class 'gen_tbl'
rbind(
...,
as_is = FALSE,
flip_strand = FALSE,
use_position = FALSE,
quiet = FALSE,
backingfile = NULL

)

52 rbind_dry_run

Arguments

... two gen_tibble objects. Note that this function can not take more objects,
rbind has to be done sequentially for large sets of objects.

as_is boolean determining whether the loci should be left as they are before merging.
If FALSE (the defaults), rbind will attempt to subset and swap alleles as needed.

flip_strand boolean on whether strand flipping should be checked to match the two datasets.
If this is set to TRUE, ambiguous SNPs (i.e. A/T and C/G) will also be removed.
It defaults to FALSE

use_position boolean of whether a combination of chromosome and position should be used
for matching SNPs. By default, rbind uses the locus name, so this is set to
FALSE. When using ’use_position=TRUE’, make sure chromosomes are coded
in the same way in both gen_tibbles (a mix of e.g. ’chr1’, ’1’ or ’chromo-
some1’ can be the reasons if an unexpectedly large number variants are dropped
when merging).

quiet boolean whether to omit reporting to screen
backingfile the path and prefix of the files used to store the merged data (it will be a .RDS

to store the bigSNP object and a .bk file as its backing file for the FBM)

Details

rbind differs from merging data with plink, which swaps the order of allele1 and allele2 according
to minor allele frequency when merging datasets. rbind flips and/or swaps alleles according to the
reference dataset, not according to allele frequency.

Value

a gen_tibble with the merged data.

rbind_dry_run Generate a report of what would happen to each SNP in a merge

Description

This function provides an overview of the fate of each SNP in two gen_tibble objects in the case
of a merge. Only SNPs found in both objects will be kept. One object is used as a reference, and
SNPs in the other dataset will be flipped and/or alleles swapped as needed. SNPs that have different
alleles in the two datasets will also be dropped.

Usage

rbind_dry_run(
ref,
target,
use_position = FALSE,
flip_strand = FALSE,
quiet = FALSE

)

read_q_matrix_list 53

Arguments

ref either a gen_tibble object, or the path to the PLINK bim file; the alleles in
this objects will be used as template to flip the ones in target and/or swap their
order as necessary.

target either a gen_tibble object, or the path to the PLINK bim file

use_position boolean of whether a combination of chromosome and position should be used
for matching SNPs. By default, rbind uses the locus name, so this is set to
FALSE. When using ’use_position=TRUE’, make sure chromosomes are coded
in the same way in both gen_tibbles (a mix of e.g. ’chr1’, ’1’ or ’chromo-
some1’ can be the reasons if an unexpectedly large number variants are dropped
when merging).

flip_strand boolean on whether strand flipping should be checked to match the two datasets.
Ambiguous SNPs (i.e. A/T and C/G) will also be removed. It defaults to FALSE

quiet boolean whether to omit reporting to screen

Value

a list with two data.frames, named target and ref. Each data.frame has nrow() equal to the
number of loci in the respective dataset, a column id with the locus name, and boolean columns
to_keep (the valid loci that will be kept in the merge), alleles_mismatched (loci found in both
datasets but with mismatched alleles, leading to those loci being dropped), to_flip (loci that need
to be flipped to align the two datasets, only found in target data.frame) and to_swap (loci for
which the order of alleles needs to be swapped to align the two datasets, target data.frame)

read_q_matrix_list Tidy ADMXITURE output files into plots

Description

Takes the name of a directory containing .Q file outputs, and produces a list of tidied tibbles ready
to plot.

Usage

read_q_matrix_list(x, data)

Arguments

x the name of a directory containing .Q files

data An associated tibble (e.g. a gen_tibble), with the individuals in the same order
as the data used to generate the Q matrix

Value

a list of q_matrix objects to plot

54 select_loci

scale_fill_distruct Scale constructor using the distruct colours

Description

A wrapper around ggplot2::scale_fill_manual(), using the distruct colours from distruct_colours.

Usage

scale_fill_distruct(guide = "none", ...)

Arguments

guide guide function passed to ggplot2::scale_fill_manual(). Defaults to "none",
set to "legend" if a legend is required.

... further parameters to be passed to ggplot2::scale_fill_manual()

Value

a scale constructor to be used with ggplot

select_loci The select verb for loci

Description

An equivalent to dplyr::select() that works on the genotype column of a gen_tibble, using
the mini-grammar available for tidyselect. The select-like evaluation only has access to the
names of the loci (i.e. it can select only based on names, not summary statistics of those loci; look
at select_loci_if() for that feature.

Usage

select_loci(.data, .sel_arg)

Arguments

.data a gen_tibble

.sel_arg one unquoted expression, using the mini-grammar of dplyr::select() to se-
lect loci. Variable names can be used as if they were positions in the data frame,
so expressions like x:y can be used to select a range of variables.

Details

Note that the select_loci verb does not modify the backing FBM files, but rather it subsets the
list of loci to be used stored in the gen_tibble.

select_loci_if 55

Value

a gen_tibble with a subset of the loci.

select_loci_if The select_if verb for loci

Description

An equivalent to dplyr::select_if() that works on the genotype column of a gen_tibble. This
function has access to the genotypes (and thus can work on summary statistics to select), but not
the names of the loci (look at select_loci() for that feature.

Usage

select_loci_if(.data, .sel_logical)

Arguments

.data a gen_tibble

.sel_logical a logical vector of length equal to the number of loci, or an expression that will
tidy evaluate to such a vector. Only loci for which .sel_logical is TRUE will be
selected; NA will be treated as FALSE.

Details

#’ Note that the select_loci_if verb does not modify the backing FBM files, but rather it subsets
the list of loci to be used stored in the gen_tibble.

show_genotypes Show the genotypes of a gen_tibble

Description

Extract the genotypes (as a matrix) from a gen_tibble.

Usage

show_genotypes(.x, indiv_indices = NULL, loci_indices = NULL, ...)

S3 method for class 'tbl_df'
show_genotypes(.x, indiv_indices = NULL, loci_indices = NULL, ...)

S3 method for class 'vctrs_bigSNP'
show_genotypes(.x, indiv_indices = NULL, loci_indices = NULL, ...)

56 show_loci

Arguments

.x a vector of class vctrs_bigSNP (usually the genotype column of a gen_tibble
object), or a gen_tibble.

indiv_indices indices of individuals

loci_indices indices of loci

... currently unused.

Value

a matrix of counts of the alternative alleles (see show_loci()) to extract information on the alleles
for those loci from a gen_tibble.

show_loci Show the loci information of a gen_tibble

Description

Extract and set the information on loci from a gen_tibble.

Usage

show_loci(.x, ...)

S3 method for class 'tbl_df'
show_loci(.x, ...)

S3 method for class 'vctrs_bigSNP'
show_loci(.x, ...)

show_loci(.x) <- value

S3 replacement method for class 'tbl_df'
show_loci(.x) <- value

S3 replacement method for class 'vctrs_bigSNP'
show_loci(.x) <- value

Arguments

.x a vector of class vctrs_bigSNP (usually the genotype column of a gen_tibble
object), or a gen_tibble.

... currently unused.

value a data.frame or tibble of loci information to replace the current one.

show_ploidy 57

Value

a tibble::tibble of information (see gen_tibble for details on compulsory columns that will
always be present)

show_ploidy Show the ploidy information of a gen_tibble

Description

Extract the ploidy information from a gen_tibble. NOTE that this function does not return the
ploidy level for each individual (that is obtained with indiv_ploidy); instead, it returns an integer
which is either the ploidy level of all individuals (e.g. 2 indicates all individuals are diploid), or a 0
to indicate mixed ploidy.

Usage

show_ploidy(.x, ...)

S3 method for class 'tbl_df'
show_ploidy(.x, ...)

S3 method for class 'vctrs_bigSNP'
show_ploidy(.x, ...)

Arguments

.x a vector of class vctrs_bigSNP (usually the genotype column of a gen_tibble
object), or a gen_tibble.

... currently unused.

Value

the ploidy (0 indicates mixed ploidy)

snp_allele_sharing Compute the Pairwise Allele Sharing Matrix for a bigSNP object

Description

This function computes the Allele Sharing matrix. Estimates Allele Sharing (matching in hierfstat))
between pairs of individuals (for each locus, gives 1 if the two individuals are homozygous for the
same allele, 0 if they are homozygous for a different allele, and 1/2 if at least one individual is
heterozygous. Matching is the average of these 0, 1/2 and 1s)

58 snp_ibs

Usage

snp_allele_sharing(
X,
ind.row = bigstatsr::rows_along(X),
ind.col = bigstatsr::cols_along(X),
block.size = bigstatsr::block_size(nrow(X))

)

Arguments

X a bigstatsr::FBM.code256 matrix (as found in the genotypes slot of a bigsnpr::bigSNP
object).

ind.row An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.

ind.col An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.

block.size maximum number of columns read at once. Note that, to optimise the speed of
matrix operations, we have to store in memory 3 times the columns.

Value

a matrix of allele sharing between all pairs of individuals

snp_ibs Compute the Identity by State Matrix for a bigSNP object

Description

This function computes the IBS matrix.

Usage

snp_ibs(
X,
ind.row = bigstatsr::rows_along(X),
ind.col = bigstatsr::cols_along(X),
type = c("proportion", "adjusted_counts", "raw_counts"),
block.size = bigstatsr::block_size(nrow(X))

)

Arguments

X a bigstatsr::FBM.code256 matrix (as found in the genotypes slot of a bigsnpr::bigSNP
object).

ind.row An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.

snp_king 59

ind.col An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.

type one of "proportion" (equivalent to "ibs" in PLINK), "adjusted_counts" ("dis-
tance" in PLINK), and "raw_counts" (the counts of identical alleles and non-
missing alleles, from which the two other quantities are computed)

block.size maximum number of columns read at once. Note that, to optimise the speed of
matrix operations, we have to store in memory 3 times the columns.

Details

Note that monomorphic sites are currently counted. Should we filter them beforehand? What does
plink do?

Value

if as.counts = TRUE function returns a list of two bigstatsr::FBM matrices, one of counts of IBS
by alleles (i.e. 2*n loci), and one of valid alleles (i.e. 2 * n_loci - 2 * missing_loci). If as.counts =
FALSE returns a single matrix of IBS proportions.

snp_king Compute the KING-robust Matrix for a bigSNP object

Description

This function computes the KING-robust estimator of kinship.

Usage

snp_king(
X,
ind.row = bigstatsr::rows_along(X),
ind.col = bigstatsr::cols_along(X),
block.size = bigstatsr::block_size(nrow(X)) * 4

)

Arguments

X a bigstatsr::FBM.code256 matrix (as found in the genotypes slot of a bigsnpr::bigSNP
object).

ind.row An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.

ind.col An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.

block.size maximum number of columns read at once.

60 theme_distruct

Details

The last step is not optimised yet, as it does the division of the num by the den all in memory (on
my TODO list...).

summary.rbind_report Print a summary of a merge report

Description

This function creates a summary of the merge report generated by rbind_dry_run()

Usage

S3 method for class 'rbind_report'
summary(object, ..., ref_label = "reference", target_label = "target")

Arguments

object a list generated by rbind_dry_run()

... unused (necessary for compatibility with generic function)

ref_label the label for the reference dataset (defaults to "reference")

target_label the label for the target dataset (defaults to "target")

Value

NULL (prints a summary to the console)

theme_distruct A theme to match the output of distruct

Description

A theme to remove most plot decorations, matching the look of plots created with distruct.

Usage

theme_distruct()

Value

a ggplot2::theme

tidy.gt_dapc 61

tidy.gt_dapc Tidy a gt_dapc object

Description

This summarizes information about the components of a gt_dapc from the tidypopgen package.
The parameter matrix determines which element is returned.

Usage

S3 method for class 'gt_dapc'
tidy(x, matrix = "eigenvalues", ...)

Arguments

x A gt_dapc object (as returned by gt_dapc()).

matrix Character specifying which component of the DAPC should be tidied.

• "samples", "scores", or "x": returns information about the map from the
original space into the least discriminant axes.

• "v", "rotation", "loadings" or "variables": returns information about
the map from discriminant axes space back into the original space (i.e. the
genotype frequencies). Note that this are different from the loadings linking
to the PCA scores (which are available in the element $loadings of the dapc
object).

• "d", "eigenvalues" or "lds": returns information about the eigenvalues.

... Not used. Needed to match generic signature only.

Value

A tibble::tibble with columns depending on the component of DAPC being tidied.

If "scores" each row in the tidied output corresponds to the original data in PCA space. The
columns are:

row ID of the original observation (i.e. rowname from original data).

LD Integer indicating a principal component.

value The score of the observation for that particular principal component. That is, the
location of the observation in PCA space.

If matrix is "loadings", each row in the tidied output corresponds to information about the prin-
ciple components in the original space. The columns are:

row The variable labels (colnames) of the data set on which PCA was performed.

LD An integer vector indicating the principal component.

value The value of the eigenvector (axis score) on the indicated principal component.

62 tidy.gt_pca

If "eigenvalues", the columns are:

LD An integer vector indicating the discriminant axis.

std.dev Standard deviation (i.e. sqrt(eig/(n-1))) explained by this DA (for compatibility
with prcomp.

cumulative Cumulative variation explained by principal components up to this component
(note that this is NOT phrased as a percentage of total variance, since many
methods only estimate a truncated SVD.

See Also

gt_dapc() augment.gt_dapc()

tidy.gt_pca Tidy a gt_pca object

Description

This summarizes information about the components of a gt_pca from the tidypopgen package.
The parameter matrix determines which element is returned. Column names of the tidied output
match those returned by broom::tidy.prcomp, the tidier for the standard PCA objects returned by
stats::prcomp.

Usage

S3 method for class 'gt_pca'
tidy(x, matrix = "eigenvalues", ...)

Arguments

x A gt_pca object returned by one of the gt_pca_* functions.

matrix Character specifying which component of the PCA should be tidied.

• "samples", "scores", or "x": returns information about the map from the
original space into principle components space (this is equivalent to product
of u and d).

• "v", "rotation", "loadings" or "variables": returns information about
the map from principle components space back into the original space.

• "d", "eigenvalues" or "pcs": returns information about the eigenvalues.

... Not used. Needed to match generic signature only.

tidy.q_matrix 63

Value

A tibble::tibble with columns depending on the component of PCA being tidied.

If "scores" each row in the tidied output corresponds to the original data in PCA space. The
columns are:

row ID of the original observation (i.e. rowname from original data).

PC Integer indicating a principal component.

value The score of the observation for that particular principal component. That is, the
location of the observation in PCA space.

If matrix is "loadings", each row in the tidied output corresponds to information about the prin-
ciple components in the original space. The columns are:

row The variable labels (colnames) of the data set on which PCA was performed.

PC An integer vector indicating the principal component.

value The value of the eigenvector (axis score) on the indicated principal component.

If "eigenvalues", the columns are:

PC An integer vector indicating the principal component.

std.dev Standard deviation (i.e. sqrt(eig/(n-1))) explained by this PC (for compatibility
with prcomp.

cumulative Cumulative variation explained by principal components up to this component
(note that this is NOT phrased as a percentage of total variance, since many
methods only estimate a truncated SVD.

See Also

gt_pca_autoSVD() augment_gt_pca

tidy.q_matrix Tidy a Q matrix

Description

Takes a q_matrix object, which is a matrix, and returns a tidied tibble.

Usage

S3 method for class 'q_matrix'
tidy(x, data, ...)

64 tidy.q_matrix

Arguments

x A Q matrix object (as returned by LEA::Q()).

data An associated tibble (e.g. a gen_tibble), with the individuals in the same order
as the data used to generate the Q matrix

... not currently used

Value

A tidied tibble

Index

∗ datasets
distruct_colours, 13

adegenet::dapc, 22, 23
adegenet::scatter.dapc, 22
as_q_matrix, 3
as_q_matrix(), 11
augment.gt_dapc, 4
augment.gt_dapc(), 62
augment.gt_pca (augment_gt_pca), 4
augment_gt_pca, 4, 63
augment_loci, 5
augment_loci.gt_pca

(augment_loci_gt_pca), 6
augment_loci_gt_pca, 6
autoplot.gt_cluster_pca, 6
autoplot.gt_dapc, 7
autoplot.gt_pca (autoplot_gt_pca), 11
autoplot.gt_pcadapt

(autoplot_gt_pcadapt), 12
autoplot.q_matrix, 10
autoplot.qc_report_indiv, 8
autoplot.qc_report_loci, 9
autoplot_gt_pca, 11
autoplot_gt_pcadapt, 12

bigsnpr::bigSNP, 58, 59
bigsnpr::snp_autoSVD(), 29–32
bigsnpr::snp_fastImputeSimple(), 26
bigsnpr::snp_manhattan(), 12
bigsnpr::snp_qq(), 12
bigsnpr::snp_readBed(), 15
bigsnpr::snp_scaleBinom(), 30–32
bigstatsr::big_randomSVD(), 32
bigstatsr::big_SVD(), 31
bigstatsr::FBM, 47, 59
bigstatsr::FBM.code256, 58, 59
bigstatsr::nb_cores(), 30, 39, 43, 47
broom::augment.prcomp, 4
broom::tidy.prcomp, 62

count_loci, 12

distruct_colours, 13, 54
dplyr::group_by(), 47–49
dplyr::select(), 54
dplyr::select_if(), 55

filter_high_relatedness, 13

gen_tibble, 4–6, 11, 13, 14, 14, 16–19, 23,
24, 26–28, 34, 35, 37–45, 47–53, 56,
57, 64

ggplot2::scale_fill_manual(), 54
ggplot2::theme, 60
gt_as_genind, 16
gt_as_genlight, 17
gt_as_geno_lea, 17
gt_as_hierfstat, 18
gt_as_plink, 18
gt_as_vcf, 19
gt_cluster_pca, 19
gt_cluster_pca(), 20–22
gt_cluster_pca_best_k, 20
gt_cluster_pca_best_k(), 6, 19, 22
gt_dapc, 22
gt_dapc(), 4, 61, 62
gt_dapc_tidiers, 4
gt_dapc_tidiers (tidy.gt_dapc), 61
gt_extract_f2, 23
gt_get_file_names, 25
gt_has_imputed, 26
gt_impute_simple, 26
gt_impute_simple(), 42
gt_king, 27
gt_load, 28
gt_load(), 35, 36
gt_pca, 28, 29, 49, 50
gt_pca(), 5
gt_pca_autoSVD, 29
gt_pca_autoSVD(), 5, 6, 63

65

66 INDEX

gt_pca_partialSVD, 31
gt_pca_randomSVD, 32
gt_pca_randomSVD(), 31
gt_pca_tidiers, 5, 6, 31–33
gt_pca_tidiers (tidy.gt_pca), 62
gt_pcadapt, 29
gt_roh_window, 33
gt_save, 35
gt_save(), 28
gt_set_imputed, 36
gt_uses_imputed, 36

hierfstat::fis.dosage(), 48
hierfstat::fst.dosage(), 49

indiv_het_obs, 37
indiv_missingness, 37
indiv_ploidy, 38, 57

loci_alt_freq, 39
loci_chromosomes, 40
loci_hwe, 40
loci_ld_clump, 41
loci_maf (loci_alt_freq), 39
loci_missingness, 43
loci_names, 43
loci_transitions, 44
loci_transversions, 45

pairwise_allele_sharing, 45
pairwise_allele_sharing(), 48, 49
pairwise_ibs, 46
pairwise_pop_fst, 47
pop_fis, 48
pop_fst, 49
predict.gt_pca, 49

qc_report_indiv, 50
qc_report_loci, 51

rbind.gen_tbl, 51
rbind_dry_run, 52
rbind_dry_run(), 60
read_q_matrix_list, 53

scale_fill_distruct, 54
select_loci, 54
select_loci(), 55
select_loci_if, 55
select_loci_if(), 54

show_genotypes, 55
show_loci, 56
show_loci(), 5, 6, 39, 56
show_loci<- (show_loci), 56
show_ploidy, 57
snp_allele_sharing, 57
snp_ibs, 58
snp_king, 59
stats::prcomp, 62
summary.rbind_report, 60
summary_rbind_report

(summary.rbind_report), 60
svds, 33

theme_distruct, 60
tibble::tibble, 57, 61, 63
tidy.gt_dapc, 61
tidy.gt_pca, 62
tidy.q_matrix, 63

vcfR::read.vcfR(), 15

	as_q_matrix
	augment.gt_dapc
	augment_gt_pca
	augment_loci
	augment_loci_gt_pca
	autoplot.gt_cluster_pca
	autoplot.gt_dapc
	autoplot.qc_report_indiv
	autoplot.qc_report_loci
	autoplot.q_matrix
	autoplot_gt_pca
	autoplot_gt_pcadapt
	count_loci
	distruct_colours
	filter_high_relatedness
	gen_tibble
	gt_as_genind
	gt_as_genlight
	gt_as_geno_lea
	gt_as_hierfstat
	gt_as_plink
	gt_as_vcf
	gt_cluster_pca
	gt_cluster_pca_best_k
	gt_dapc
	gt_extract_f2
	gt_get_file_names
	gt_has_imputed
	gt_impute_simple
	gt_king
	gt_load
	gt_pca
	gt_pcadapt
	gt_pca_autoSVD
	gt_pca_partialSVD
	gt_pca_randomSVD
	gt_roh_window
	gt_save
	gt_set_imputed
	gt_uses_imputed
	indiv_het_obs
	indiv_missingness
	indiv_ploidy
	loci_alt_freq
	loci_chromosomes
	loci_hwe
	loci_ld_clump
	loci_missingness
	loci_names
	loci_transitions
	loci_transversions
	pairwise_allele_sharing
	pairwise_ibs
	pairwise_pop_fst
	pop_fis
	pop_fst
	predict.gt_pca
	qc_report_indiv
	qc_report_loci
	rbind.gen_tbl
	rbind_dry_run
	read_q_matrix_list
	scale_fill_distruct
	select_loci
	select_loci_if
	show_genotypes
	show_loci
	show_ploidy
	snp_allele_sharing
	snp_ibs
	snp_king
	summary.rbind_report
	theme_distruct
	tidy.gt_dapc
	tidy.gt_pca
	tidy.q_matrix
	Index

